(i) ps: arises as a composition of sample ¢ as a mixture
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SAMPLES

.HAPLOTYPES. HAPLOT‘.{P.ES SAMPLES
binary matrix ComPOthlon data: ngs
Z = [Zs] weights mutations
SNV s, wy = (wyc)
haplotype ¢ sample ¢

1 Tumor Heterogeneity

of C' latent haplotypes.
(pairs of haplotypes define subclones).
(ii) Mutation s in haplotype c is either present (Z;. = 1)
or not (Zs. = 0).
Z.=(Zs, s=1,...,5) defines haplotype c.
(iii) Prior p(Z) on (S x C) binary matrix Z,
prior p(w) on mixture weights w;. for composition

(i)-
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Inference

Goal: Reconstruct cell subpopulations = estimate Z and C.

Problem: Deconvolution of ps; as a mixture of binary indi-
cators Zg.

Dst = Zwthsc + woPo (1)

plus “background noise”
Real problem: Z is latent, need to infer Z from the data.

Identifiability: In principle even feasible with one sample.
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Tumor Heterogeneity

e Mutations acquired over a tumor’s life history

e Every new mutation gives rise to a new subpopulation of

cells (“subclone” = pair of haplotypes)

e — heterogeneous population of cells, composed of sub-
populations with varying numbers of mutations (e.g.,

Gerlinger et al. (2012, NEJM).

e Tumor history imprinted in each sample as the mosaicism

of mutations.

Weights are identified across mutations s.

Alternatives: e cluster variant allele fractions (VAF),
fst = ]T\L]:tta
— subclones (e.g., PyClone: Roth et al, 2014 Na-
ture Meth)

e mixture of Beta’s for observed VAF (SciClone:
Miller et al., 2014 PLOS Comp Bio); variational
Bayes

e CNV data, fit mle for the prob of read alignments
(THeta: Oesper et al., 2013 Genome Bio); mle mix-
ture decomposition.

e instead (1) explicitely models decomposition of sam-
ples into (hypothetical) subclones.
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Data

SNV: point mutations, s=1,...,5

Data: Ny = # reads mapped to locus of SNV s in sample ¢.

ng = # of these with SNV.

Sampling model: ng ~ Bin(Ng, pst)

Prior: in words,

2 Feature allocation
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Feature allocation

Feature allocation: binary matrix Z
rows = mutations s =1,...,.S;
cols = haplotypes ( C {1,...,5})

e Each mutation is in multiple subsets (haplotypes)



e Binary matrix Z = [Z,] records membership of mu-Composition of sample ¢ as mix of haplotypes:
tations in haplotypes. (wge, ¢ = 1,...,C) ~ Dir(:), for each sample,

t=1,...,T.
VS.

Clustering: each mutation is in ezactly one subset
(partition), row sum ) Z, =1 Slide 8

Slide 6 Results — Pancreatic Cancer
n = 5 samples of pancreatic cancer (PDAC, pancreatic duc-
tal adenocarcinoma).

Indian buffet process ‘ see figures on slide 1. ‘

(Griffiths & Ghahramani, 2005 NIPS)
Equivalent (original) definition of p(Z). Let Zs. = cus-
tomer s selects dish c.

First customer: selects C; ~ Poi(a) dishes, Z1. = 1, ¢ =4 Addlng copy number variation

1,...,C1. :
Let C = Cl Slide 9

s-th customer: Let ms. =) ., Zrc;
Haplotypes vs. Subclones

lect dish ¢ — 1 O with prob p(Z.. — 1) — M. So far our discussion is on haplotypes.
o selectdishe = 1,..., O with prob p(Zsc = 1) = ~s 'But cell subpopulations (subclones) are defined by pairs of

haplotypes.
e O ~ Poi(a/s) new dishes, Z;. =1,
Life History of a Tumor
= 1,... >
e c=C+1,...,C+C; p “ ~ @ N r
0days 90 days 180 days 360 days
e Set C=C+C4 /’ACG ACG _Ace
CGG CGG \ GGG
Prior for feature allocaiton Z. / o o N 5"
ACG
NEC Tee
C GG \ 5%
100%
A GG T GG T GG
3 MOdelforTH \ces CGG | CGa
90% \ 20% \ 20%
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cGG CGG
\ \ / \ 70% 70% for
Prior a diploid organism, pairs of haplotypes define a unique

genome.
Latent haplotypes: p(Z) on (Sx(C) binary matrix, w. ran-

dom C. e Next: will change to subclones (pairs of haplotypes) as
Feature allocation prior: Indian buffet process p(Z) experimental units.
(IBP), e Subclone can have Z;, € {0,1,2} copies of each muta-
with customers (experimental units) s =1,...,5 select- tion.
ing dishes (features) c=1,...,C
Think of SNV s selecting haplotype (feature) ¢
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IBP: define p(Z), first for fixed C,
e 1.~ Be (%, 1) for each feature c=1,...,C
7 1 B _1 g Alternative models and generalizations
o p(Zse=1]me) =me, s =1,..., To represent subclones and more we relax assumptions, us-
e Drop unselected features ing

C' — oo defines the IBC (Indian buffet process) p(Z) (i) cIBP for subclones (= pairs of haplotypes)



(ii) CNV’s: use data on copy number variation N

(iii) repulsive priors (DPP): IBP includes independence ;. /. )
across columns!

Lung Cancer — 4 Samples
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Eaxtension (i): ¢cIBP

1 2 3 4 5

Subclones: pair of haplotyt- | 11251100110
2 1|05 1 1 1

pes, Zsc € {O’ L 2} 3los| oo o os
Categorical IBP: Categorical : Of 2 2: 0(_)5 gz
generalization of the IBP, [ 1|0 [o5| o |0
p(Z) for a random trinary |7 [ 1] o]0 |0 o

: : 8 1 |05|/0|05|1

matrix with zs. € {0,1,2} e
0(05| 0|0 0 1
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Extension (ii): CNV & SNV

CNV & SNVs: modeling of copy number variation cmd5 RePUI81ve Prios
SNV given CNV.
Earlier: p(nst | Nst, Z,...) conditional on N andSlide 15
Z =SNV’s.

Now: p(nst | Nst, Z,...) and p(Ng | L, .. .), Eztension (ii): Repulsive priors
with L = [¢s.] = CNV.

Independence: IBP implies independence across features!

CNV: Latent matrix L = [(,] reports copy gain (sc > 2),  This should be proibido, verboten, vietato...

loss (5. < 2) or neutral (¢s. = 2) for each locus s and
subclone ¢ under consideration. Latent biologic structure: common theme — inference for
latent biologic structure

L ~ cIBP
e feature allocation: used here, in TH
Sampling model: e mixture model: interpreting components as biolog.
c meaningful
Nt | 61, Myt ~ Poi(¢r Myt /2). with My, = Zwtcgsa e clustering: e.g., of patient population
c=1
Desiderata: distinct features should be diverse to allow in-
terpretation, to serve as meaningful clinical targets, etc.;
Slide 15 Independent priors: over features, mixture components
etc., is usually inappropriate, but often used.
E.g., IBP implies independent prior over columns z..
SNV: conditional on £.: Repulsive priors: replace independent prior by repulsive
. priors, e.g.,
Zac | Lo ~ Unif{0,.., Coc} Determinantal point process (DPP; Macchi, 1975;
and sampling model Lavancier et al. 2015, JRSSB; Affandi et al., 2013)
Nt |Nstaz7L7"' ~ Bin(Nstapst)
C
py = DOEOWOF Doy Wietse  gg, 1

Mst
That’s all!



DPP on images “Jaguar”
X ={x1,...,xK}, xp € ”Jaguar images”
Want more diversity, fewer cats — more football teams etc.

)

Slide 17 Truth Z°  DPP: Estimated 7 IBP: Estimated 2
DPP
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DPP: point process X = {x,...,2x} on x; € S for some

space S, e.g. S C N2 or S = images.

. . . DPP

Idea: instead of many similar points x;, generate only few

distinct ones. DPP: point process X = {z1,...,zx} on z; € S for some

space S}
penalizes “similar” x;.

. e . o DPP on finite discrete space: p(X) o det Cx
8 Jooe T where Cx ;; = C(z;, ;) for a p.d. kernel C(z,z’).
DPP on (bounded) continuous space: density  w.r.t.
indep (unif) DPP unit rate Poisson process

Repulsive point process: avoid duplication of similar val- f(X) =detCx/ H(l +An)
ues x;; . . )
for example, google-ing “Jaguar”, you want X = { cat, }Vltél’(x/\h)h(—)delgenvalues of operator T : h —
car, football team, ...} S Y)Y ey

MCMC: easy for finite S (e.g., Kulesza, A. and Taskar, B.
(2012 Machine Learn.)

, for continuous S: reversible jump MCMC with f(X)

Slide 18 (Xu et al., 2015 arXiv)

DPP - Ezamples

Simulation truth = mix of normals (left). Clustering modelSiide 21
with DPP (center) vs. DP mixture (right) prior.

Histogeam o e ofcsers by P10

Summary

S Summary
data & o L  DPP ! DP mixture: 1 TH: Model-based estimation of cell subpopulations is possi-
ata & sim trut : n ﬁ"uiterb mixture: n clusters ble — and seems to work.

Hisogram o rurber o clustrs by DP

Poory-separatnd

Big data: MCMC is not feasible anymore — alternative ap-
proaches remain feasible.

Limitations: and extensions

S Tumor phylogenetics: Without condition on phyloge-
Density estimation for a mix of normals. netic tree of subclones

A priori independent cell types: indpendent z, =
: (Zi1...s.c), with p(z. = z~) > 0, a priori (i know
Slide 19 — arrgh!)

Alternative dependent prior using DPP or others.

Simulation truth Z° (left). Feature allocation with DPP
prior vs. IBP on features



SOFTWARE: R code at http://www.ma.utexas.edu/References
users/yxu/ Stide 2
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6 Extra Slides — MAD Bayes Adv in Neural Inf Processing Systems, 1430-1438.
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Determinantal point process models and statistical in-
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Roth, A. et al. (2014). “PyClone ...”, Nature Methods, 11,

DP mixture: Kulis & Jordan (2012) recognize log posterior 396-
~ criterion function in k-means — voila!

This is for normal sampling, asymptotically for small “Bayclone: Bayesian Nonparametric Inference of Tumor

variance and shrinking total mass. Subclones Using NGS Data.” In Proceedings of The Pacific
Symposium on Biocomputing (PSB) 2015, 467-78.

Xu Y, Miiller P, Yuan Y, Gulukota K and Ji Y, (2015).
“MAD Bayes for Tumor Heterogeneity,” JASA, 110, 503-514.

IBP: Broderick et al. (2013) extend a similar argument to
the IBP, with normal sampling and small variance and
shrinking rate of new features,

IBP with binomial sampling: same argument can be
made :-)
using increasing scaling of Bin with S and shrinking IBP

par 7, using y = exp(—BA?)

Approx posterior: use k-means with different starting val-
ues to characterize posterior.
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Results — Pancreatic Cancer
n = 5 samples of pancreatic cancer (PDAC, pancreatic duc-
tal adenocarcinoma). Estimated wy,:
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HAPLOTYPES HAPLOTYPES

S =118 SNV’s in KEGG pathway S = 7000 SNV’s

(2014).

Sengupta, S., Guluokta, K., Lee, J., Miiller, P., and Ji, Y. (2015)



