Feature allocation models for tumor heterogeneity

PETER MÜLLER and YANXUN XU, UT Austin

JUHEE LEE, UCSC, YUAN JI, U Chicago & NorthShore, SUBHAJIT SENGUPTA and K. GULUKOTA, NorthShore Health System

Tumor Heterogeneity 1

Slide 2

Tumor Heterogeneity

- Mutations acquired over a tumor's life history
- Every new mutation gives rise to a new subpopulation of cells ("subclone" = pair of haplotypes)
- \rightarrow heterogeneous population of cells, composed of subpopulations with varying numbers of mutations (e.g., Gerlinger et al. (2012, NEJM).
- Tumor history imprinted in each sample as the mosaicism of mutations.

Slide 3

Data

SNV: point mutations, $s = 1, \ldots, S$

Data: $N_{st} = \#$ reads mapped to locus of SNV s in sample t. $n_{st} = \#$ of these with SNV.

Sampling model:
$$n_{st} \sim Bin(N_{st}, p_{st})$$

Prior: in words.

- (i) p_{st} arises as a composition of sample t as a mixture of C latent haplotypes. (pairs of haplotypes define subclones).
- (ii) Mutation s in haplotype c is either present $(Z_{sc} = 1)$ or not $(Z_{sc} = 0)$. $\mathbf{Z}_c = (Z_{sc}, s = 1, \dots, S)$ defines haplotype c.
- (iii) Prior $p(\mathbf{Z})$ on $(S \times C)$ binary matrix \mathbf{Z} , prior $p(\boldsymbol{w})$ on mixture weights w_{tc} for composition (i).

Slide 4

Inference

Goal: Reconstruct cell subpopulations = estimate Z and C.

Problem: Deconvolution of p_{st} as a mixture of binary indicators Z_{sc}

$$p_{st} = \sum_{c} w_{tc} Z_{sc} + w_{t0} p_0 \tag{1}$$

plus "background noise"

Real problem: Z is latent, need to infer Z from the data.

Identifiability: In principle even feasible with one sample. Weights are identified across mutations s.

- Alternatives: • cluster variant allele fractions (VAF), $f_{st} = \frac{n_{st}}{N_{st}};$ \rightarrow subclones (e.g., PyClone: Roth et al, 2014 Nature Meth)
 - mixture of Beta's for observed VAF (SciClone: Miller et al., 2014 PLOS Comp Bio); variational Bayes
 - CNV data, fit mle for the prob of read alignments (THeta: Oesper et al., 2013 Genome Bio); mle mixture decomposition.
 - instead (1) explicitly models decomposition of samples into (hypothetical) subclones.

Feature allocation $\mathbf{2}$

Slide 5

Feature allocation

Feature allocation: binary matrix Zrows = mutations $s = 1, \ldots, S$; $cols = haplotypes (\subseteq \{1, \dots, S\})$

• Each mutation is in *multiple* subsets (haplotypes)

• Binary matrix $\mathbf{Z} = [Z_{sc}]$ records membership of mu-Composition of sample t as mix of haplotypes:

tations in haplotypes.

 $(w_{tc}, c = 1, \ldots, C) \sim \text{Dir}(\cdot),$ for each sample, $t = 1, \ldots, T.$

vs.

Clustering: each mutation is in *exactly one* subset (partition), row sum $\sum_{c} Z_{sc} = 1$

Slide 6

Indian buffet process

(Griffiths & Ghahramani, 2005 NIPS) Equivalent (original) definition of $p(\mathbf{Z})$. Let $Z_{sc} = \text{cus}$ tomer s selects dish c.

First customer: selects $C_1 \sim \text{Poi}(\alpha)$ dishes, $Z_{1c} = 1$, c = 4 $1, \ldots, C_1.$

Let $C = C_1$

s-th customer: Let
$$m_{sc} = \sum_{r < s} Z_{rc}$$
;

- $C_s \sim \operatorname{Poi}(\alpha/s)$ new dishes, $Z_{sc} = 1$,
- $c = C + 1, \ldots, C + C_s$
- Set $C \equiv C + C_s$

Prior for feature allocation Z.

Model for TH 3

Slide 7

Prior

Latent haplotypes: $p(\mathbf{Z})$ on $(S \times C)$ binary matrix, w. random C.

Feature allocation prior: Indian buffet process p(Z)(IBP),

with customers (experimental units) $s = 1, \ldots, S$ selecting dishes (features) $c = 1, \ldots, C$ Think of SNV s selecting haplotype (feature) c

IBP: define $p(\mathbf{Z})$, first for fixed C,

- $\pi_c \sim \operatorname{Be}\left(\frac{\alpha}{C}, 1\right)$ for each feature $c = 1, \ldots, C$
- $p(Z_{sc} = 1 \mid \pi_c) = \pi_c, s = 1, \dots, S$
- Drop unselected features

 $C \to \infty$ defines the IBC (Indian buffet process) $p(\mathbf{Z})$

Results - Pancreatic Cancer n = 5 samples of pancreatic cancer (PDAC, pancreatic ductal adenocarcinoma).

see figures on slide 1.

Adding copy number variation

Slide 9

Haplotypes vs. Subclones

So far our discussion is on haplotypes. • select dish c = 1, ..., C with prob $p(Z_{sc} = 1) = \frac{m_{sc}}{s}$; But cell subpopulations (subclones) are defined by pairs of haplotypes.

a diploid organism, pairs of haplotypes define a unique genome.

- Next: will change to subclones (pairs of haplotypes) as experimental units.
- Subclone can have $Z_{sc} \in \{0, 1, 2\}$ copies of each mutation.

Slide 10

Alternative models and generalizations

To represent subclones and more we relax assumptions, using

(i) cIBP for **subclones** (= pairs of haplotypes)

- (ii) CNV's: use data on copy number variation N_{st}
- (iii) repulsive priors (DPP): IBP includes independence $\overline{Slide 14}$ across columns!

DPP on images "Jaguar" $X = \{x_1, \dots, x_K\}, x_k \in$ "Jaguar images" Want more diversity, fewer cats – more football teams etc. :-)

DPP: Estimated \hat{Z}

IBP: Estimated \hat{Z}

Slide 17

DPP

Slide 20

Summary

proaches remain feasible.

netic tree of subclones

Limitations: and extensions

 $- \operatorname{arrgh!})$

DP mixture: n clusters ble – and seems to work.

- **DPP:** point process $X = \{x_1, \ldots, x_K\}$ on $x_i \in S$ for some space S, e.g. $S \subseteq \Re^2$ or S = images.
- **Idea:** instead of many similar points x_j , generate only few distinct ones.

- **Repulsive point process:** avoid duplication of similar values x_j ;
 - for example, google-ing "Jaguar", you want $X = \{ cat, car, football team, ... \}$

Slide 18

Truth Z^o

DPP

DPP: point process $X = \{x_1, \ldots, x_K\}$ on $x_i \in S$ for some space S;

penalizes "similar" x_j .

DPP on finite discrete space: $p(X) \propto \det C_X$ where $C_{X,ij} = C(x_i, x_j)$ for a p.d. kernel C(x, x').

DPP on (bounded) continuous space: density w.r.t. unit rate Poisson process

$$f(X) = \det C_X / \prod (1 + \lambda_h)$$

with λ_h = eigenvalues of operator $T : h \rightarrow \int_S C(x,y)h(y)dy$.

MCMC: easy for finite S (e.g., Kulesza, A. and Taskar, B. (2012 Machine Learn.) for continuous S: reversible jump MCMC with f(X) (Xu et al., 2015 arXiv)

Summary **TH:** Model-based estimation of cell subpopulations is possi-

Big data: MCMC is not feasible anymore - alternative ap-

Tumor phylogenetics: Without condition on phyloge-

A priori independent cell types: indpendent $z_c = (Z_{1...S,c})$, with $p(z_c = z_{c'}) > 0$, a priori (i know

Alternative dependent prior using DPP or others.

DPP - ExamplesSimulation truth = mix of normals (left). Clustering model Slide 21
with DPP (center) vs. DP mixture (right) prior.

Density estimation for a mix of normals.

Slide 19

Simulation truth Z^{o} (left). Feature allocation with DPP prior vs. IBP on features Slide 24

6 Extra Slides – MAD Baves	Affandi, R. H., Fox, E., and Taskar, B. (2013). Approximate inference in continuous determinantal processes. Adv in Neural Inf Processing Systems, 1430–1438.
Slide 22	Lavancier, F., Møller, J., and Rubak, E. (2015). Determinantal point process models and statistical in- ference. JRSSB, 77, 853–877.
Posterior inference for IBP using MAD Bayes with YANXUN XU, UT Austin; YUAN YUAN, Baylor C.of Med.; YUAN JI and KAMALAKAR GULUKOTA, NorthShore Hospi- tal.	Lee, J., Müller, P., Ji, Y. and Gulukota, K. (2015) "A Bayesian Feature Allocation Model for TH," Ann. of Applied Stat, 9, 621-639.
	 ^{bf}Lee, J., Müller, P., Sengupta, S., Gulukota, K. and Ji, Y. (2014). "Bayesian Inference for Intra-Tumor Heterogeneity in Mutations and Copy Number Variation," <i>JRSSC</i>, final(?) revision.
 DP mixture: Kulis & Jordan (2012) recognize log posterior ≈ criterion function in k-means – voila! This is for normal sampling, asymptotically for small variance and shrinking total mass. IBP: Broderick et al. (2013) extend a similar argument the IBP, with normal sampling and small variance and shrinking rate of new features, 	 Roth, A. et al. (2014). "PyClone", Nature Methods, 11, 396- Sengupta, S., Guluokta, K., Lee, J., Müller, P., and Ji, Y. (2015) "Bayclone: Bayesian Nonparametric Inference of Tumor Subclones Using NGS Data." In Proceedings of The Pacific Symposium on Biocomputing (PSB) 2015, 467-78. ^OXu Y, Müller P, Yuan Y, Gulukota K and Ji Y, (2015). "MAD Bayes for Tumor Heterogeneity," JASA, 110, 503-514.
IBP with binomial sampling: same argument can b made :-) using increasing scaling of Bin with β and shrinking IBI	e P

par γ , using $\gamma = \exp(-\beta\lambda^2)$

Approx posterior: use k-means with different starting values to characterize posterior.

Slide 23

Results – Pancreatic Cancer

n=5 samples of pancreatic cancer (PDAC, pancreatic ductal adenocarcinoma). Estimated $w_{tc}{:}$

